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The velocity fields of three laminar radial flow electrochemical reactors are modeled using numerical 
and semi-analytical techniques. The capillary gap cell configuration is modeled using Galerkin finite 
element (GFEM) analysis and the asymptotic form of its velocities presented. An approximate 
asymptotic expression for entry length is also derived and compared to predicted entry lengths from 
the GFEM. Qualitative agreement is achieved. Two areas of flow separation are observed, their 
location being a function of gap width, flow Reynolds number (Re) and inlet pipe diameter. The 
rotating electrolyzer (REL) flow field is also simulated with the GFEM model. The insensitivity of the 
REL radial velocity profiles as a function of flow rate is shown. The shape of the radial velocity profiles 
and the degree of separation of the radial velocity jets are shown to be determined by the Taylor 
number (being the ratio of half-gap width over the theoretical boundary layer thickness). The 
asymptotic entry length solution is shown to provide a better estimate for this cell than for the 
capillary gap cell. Unlike the previous cells the pump cell shows less asymptotic behavior and is 
therefore more difficult to simulate. The GFEM approach is usually too costly for this cell and 
therefore perturbation techniques are applied. The resulting semi-analytical solution adequately 
represents laminar pump cell velocity profiles over a broad range of parameter values and is very short 
and easy to implement. One high Taylor number simulation is performed using the GFEM and the 
previously reported decoupling of electrodic mass transfer is interpreted via velocity profiles. 

Nomenclature 
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Re 
Regap 

Reo 
Se 
spin 
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Vc 

Vr 

gap width 
volumetric flow rate (m 3 s -~) 
dimensionless radius 
radius (m) 
Reynolds number (yea~v) 
gap Reynolds number (a2oo/v) 
rotational Reynolds number (coR2/v) 
Schmidt number (v/D) 
dimensionless group (Equation 8) 
time (s) 
characteristic velocity (m s- 1 ) 
two defined: for FEM analysis it was Q/r~b 2 
for Perturbation analysis 6Q/(2nRina) 
dimensionless radial velocity 

1. Introduction 

As a result of the ongoing search for improved elec- 
trochemical reactors, many alternative designs have 
surfaced. Of these, the radial flow parallel disc designs 
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V0 
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Z 

dimensionless axial velocity 
dimensionless azimuthal velocity 
velocity (m s- i ) 
dimensionless axial distance 

Greek 
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0 
0 
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09 

symbols 
Taylor number (Equation 7) 
ratio of characteristic lengths (a/Ro) 
viscosity (kg m- i s) 
constant 
density (kg m -3) 
azimuthal direction 
kinematic viscosity (m 2 s ~t) 
angular velocity (rad s- ~ ) 

show many advantages over the more conventional 
parallel plate configurations. Figure 1 describes the 
general geometry of these electrochemical reactors. 
The general improvement possessed by the radial flow 
design is that the gap width can be adjusted. Since gap 
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Fig. 1. Radial flow cell geometry. 

width alters the ratio between electrode surface area 
and electrolyte volume, one can exercise greater con- 
trol over the contribution of electrodic reaction to the 
overall process. In addition, the interelectrode voltage 
drop (solution IR  loss), being proportional to the gap 
width, can also be readily adjusted. These factors, with 
their corresponding impact on the figures of merit, 
suggest that radial flow cells may become more popular 
as preferred reactor types in future electrochemical 
applications. 

The flow rates used in many electrochemical appli- 
cations are large enough that the flows are adequately 
described as convection dominated. In such instances, 
the transport of species present in the flow has negli- 
gible influence on the velocity profiles. Therefore, 
most of the relevant work in defining the radial cell 
hydrodynamics originates in areas other than electro- 
chemical engineering, where only fluid flow was con- 
sidered regardless of possible application. This paper 
is therefore an attempt at summarizing the radial flow 
cell flow fields and presenting them in an accurate and 
unified manner. 

There are three main reactors of this configuration. 
The first, and most common, is the capillary gap cell 
(CGC), where both discs are stationary; electrolyte 
flows radially outwards between the two parallel discs. 
The second type is the rotating electrolyzer (REL) 
which is similar to the CGC except that it also includes 
coaxial disc rotation. The third type is the pump 
cell (PC) which has one disc spinning and one disc 
stationary. The rotational set-up determines the 
hydrodynamic behavior which in turn influences reac- 
tor performance. Jansson and co-workers [1-5] have 
shown the differences in cell performance for numerous 
applications. A brief summary of previous flow field 
studies will now be given. 

2. Previous work 

2.1. Capillary gap cell 

For this case both discs are stationary and, after a 

certain entry length, parabolic flow results (in the 
laminar regime). Mochizuki et al. [6] observed oscillat- 
ory behavior at low flow Reynolds numbers (Re = 16 
according to the definition in this work). These were 
observed in the presence of slight heat transfer effects. 
Szeri et al. [7] performed experimental and theoretical 
work on the stationary case as part of a detailed investi- 
gation into flow between parallel discs. Operating the 
stationary case over a two-fold range in flow rate 
(64.55 and 135.7 cm 3 s -1 ) at a gap width of 3.175 mm, 
they failed to observe any flow separation. Indeed, 
they indicate 'we were unable to show experimentally 
flow separation at the walls under any conditions'. The 
full range of operating conditions was not provided, 
but even so this result is curious. The simplified theory 
of Moller [8] predicts conditions of disc spacing and 
flow which would produce adverse pressure gradients 
and incite flow separation. Ashworth and Jansson 
[4] indicate that for a gap to disc radius ratio of 
8.7 x l 0  -4  and a Reynold's number of 5.03 x 105 
the radial gradient is always favorable (negative). 
However for a gap four times larger (1 mm compared 
with 0.25 mm) an unfavorable gradient was observed 
over almost all of the disc surfaces. Coupling this 
adverse pressure profile with the radial deceleration, 
separation would be expected. Indeed Yang [9] has 
reported time dependent upper and lower regions of 
separation forming at the disc surfaces at d~fferent 
radii. This tends to support the expectation of flow 
separation and make the lack of such, in the work of 
Szeri et al., appear even more anomalous. Since the 
full range of parameters employed in that work is 
not stated, it is difficult to say any more. The only 
mitigating factor is that the results of Ref. [4] were in 
the turbulent regime (although the pressure profiles 
were somewhat the same for turbulent and laminar 
flows) and the observations of Yang [9] were made 
with slight natural convection influences. The work of 
Szeri et al. was over some range of parameters but 
the range of actual values was not included in that 
paper. 

2.2. Pump cell 

Early work was done by Bayley and Owens [10] on 
disc flows where one disc was spinning and one 
stationary, but their work was for turbulent flows 
where flow Reynolds numbers were much higher than 
rotational Reynolds numbers, and hence the behavior 
differed little from that of a turbulent capillary gap 
cell. Other work done earlier has been restricted to 
rotation of a single disc in a semi-infinite fluid; an 
example of this is the work of van Karman described 
by Schlichting [t 1]. Therein, van Karman 'assumed' 
forms for the velocities: Vr assumed to be rwf(z), v o as 
rwg(z) and v~ as (vw)~ A set of  non-linear, simul- 
taneous, ordinary differential equations result, which 
provide a very adequate representation for the physi- 
cal system studied (rotating disc in a semi-infinite 
medium). Due to the presence of the stationary disc in 
the pump cell, this same analysis is not applicable, 



770 F.B. THOMAS, P. A. RAMACHANDRAN, M. P. DUDUKOVIC AND R. E. W. JANSSON 

although some similarities are present, as will be illus- 
trated later in this paper. 

Much work was done applying these von Karman 
transformations to two closely spaced infinite and 
finite discs [12-14]. Multiple solutions were found 
depending primarily upon a gap Reynolds number 
(see Ref. [14]). The stability of these solutions is not 
commented on however. 

Adams and Szeri [15] developed a numerical solu- 
tion scheme based on the Galerkin-Kantorovich 
method in the axial direction and orthogonal collo- 
cation in the radial direction. Szeri et al. [7] then 
expanded on Adams et al.'s [15] previous work, 
including experimental results. They studied the cases 
of zero rotation, one disc spinning, co-rotational 
coaxial discs as well as counter-rotating coaxial discs. 
The experimental procedure and apparatus used is 
well documented in that reference. The theoretical 
model developed was based on Galerkin time integra- 
tion, using B-splines for the spatial terms. On the basis 
of both experimental and theoretical investigation, 
they conclude that the flows observed are unique and 
reproducible irrespective of the starting conditions, 
and therefore the other members of the family of 
multiple solutions described by Holodniok et al. [14] 
are unstable under all conditions. The only limiting 
flow observed approached the Batchelor-type scenario 
[12], and the Stewartson branch [13] was never con- 
firmed in their work. 

2.3. Rota t ing  electrolyzer 

Kreith [16], in studying heat transfer between parallel 
discs developed a series solution to the problem of 
coaxial co-rotating discs. He suggested that for a given 
flow rate, as rotational speed is increased, radial 
velocity jets appear close to the disc surfaces. In addit- 
ion, at a Taylor number (defined as 0.5a(og/v) ~ - 

representing the ratio of half-gap width divided by the 
characteristic boundary layer thickness) above rc there 
would be a zone of zero velocity beginning at the mid- 
plane between the discs. Later, Jansson [3] extended 
the series form of Kreith to include third-order terms. 
Experimental work was also reported [3, 17] and the 
agreement between theory and experiment was quite 
good. The advantage of the third-order approximation 
of Jansson [3] was especially obvious at large Taylor 
numbers (larger than about 7) when compared to 
Kreith's first-order system. Simek and Rougar [18] 
extended the same analysis to include fifth-order 
terms, the only improvement being apparent at small 
radii only. However, some numerical problems were 
encountered contributing to reverse flows in the regions 
close to the discs. The authors conclude that this is a 
numerical artifice inconsistent with reality. 

The arguments of Holodniok et al. [14] are also 
relevant to this configuration. However, in the light of 
the findings of Szeri et al. [7], it is thought that the 
multiple solution scenario would not be the case in 
reality, all but one solution probably being unstable 
and never appearing. 

In the light of these findings, it was apparent that a 
simplified representation of the three radial cell veloc- 
ity profiles would be difficult to achieve, if not imposs- 
ible, and therefore to adequately describe convection 
effects in the electrochemical reactors of interest, 
recourse would have to be made to numerical analy- 
sis. The next section descibes the formulation used, 
including the equations, defined dimensionless groups 
and boundary conditions applied, and numerical tech- 
nique employed. 

3. Model formulation 

Incompressible flows are described by the Navier- 
Stokes equations. The derivation of these equations is 
detailed elsewhere (for example Schlichting [11]) and is 
therefore not discussed here. Defining the following 
dimensionless quantities as 

Vz* 
"Or - -  , 73z = - - ;  730 - -  " 

73c 73c R 0 ( 0  ' 

P* -- rgzZ .  R Z 
e - r - , , Z = - - ,  

rv 2 Ro a 

a vca ( R o c n ]  2 
- ; Re  - ; spin = 

R0 v k Vc / 

where vc is defined as Q/(gb 2) and b is the radius of 
the inlet pipe. Substituting into the Navier-Stokes 
equations ones obtains 

'U z 073 r ~vr spin v~ + _ _  
vr O--r r eOz 

l((  Vr Vr) 
- Or +-Ree ~ -~rd-r2 + rOr -fl 

02)0 Vr V0 "Uz (~730 
v < ~ r +  + - - - -  r e 0z 

= Re + r o t  7 

OVz Vz OVz 
v , - ~ r + - - -  Oz 

0e 1( ( 2Vz o73z) 
- Oz + Ree e \  Or 2 + r d r ]  + 

O(rVr) 1 O(rvz) 
- - + - -  -- 0 

0r ~0z 

(1) 

(2) 

e ] (3) 

(4) 

The dimensionless group 'spin' can also be expressed 
as a product of the three, more conventional, dimen- 
sionless groups, rotational Reynolds number Reo, 

flow Reynolds number (Re)  and Taylor number (a). 
These are defined as 

Reo - R2 c~ (5) 

Re - voa (6) 

( a 2 ~ o ~  ~176 

= k-W(/  (7) 
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s p i n -  4Re~ = R e  2 4 ( - ~ ) ( a 2 c ~  / 

(8) 

Therefore on the basis of  Re, Reo, a, e and one other 
parameter, the radius of  the inlet pipe, the problem is 
defined. To complete the formulation, the boundary 
conditions must be specified. 

At the inlet pipe entrance, some distance below the 
bottom disc, fully developed laminar pipe flow is 
specified. That  is, vz assumes a parabolic profile as a 
function of  pipe radius (2 x v~(1 - (R/b) 2) where v~ 
is as defined previously: v~ = Q/nb 2. At this point 
Vr = VO = 0 also. 

The axis of symmetry provides the following bound- 
ary conditions: 

7--/r ~ 0 

OVo 
- 0 ( 9 )  

Dr 

0Vz 
- 0 

c~r 

The solid surfaces are no-slip boundaries and there- 
fore 

V r = 0 

V z = 0 

73 0 ~ r 

(10) 

The only boundary which is somewhat subject to 
controversy is the exit end. Usually in electrochemical 
cells, the effluent from the reactor empties into a larger 
tank containing the same fluid. To rigorously define 
the boundary the whole system would have to be 
simulated. For  the purpose of  this work, a simplified 
approach will be taken since the exit boundary con- 
ditions are not of  extreme importance, due to the 
coefficient of the second-order radii terms (as will be 
demonstrated in the next section), and from experi- 
ence gained from running the model, which will also 
be commented on when the model results are reported. 

3.1. Capillary gap cell 

In this cell, the axial velocity approaches a small value 
beyond the entry region. From continuity, since 
v~ ~ O, OVz/OZ = 0, then 

OVr _ v r 
Or (11) 

RO 

at the exit. Hence in the iterative scheme, as the correct 
value of Vr is approached, the true boundary condition 
will be approximated. 

The vz boundary condition is ~vz/Or = 0 and since 
there is no rotation in the capillary gap cell Vo is always 
zero. 

3.2. Pump cell 

The form of  the exit boundary conditions for this cell 

was less clear, since Vz was finite and could not be 
assumed to be zero. Therefore Ovz/Oz was not zero and 
boundary information could not be gained by the 
method used in the CG cell. From some semi-analytical 
work, to be described later in this paper, a few trends 
became apparent, although they were strictly only 
approximate. If the radial velocity were a function of 
r x f(o), z) then Ovr/& could be approximated by 

OVror - vrr ~ (12) 

since vr at R0 would be R0 x f(co, z) and as conver- 
gence was obtained, vr/r at r = R0 would approach 
the functionf(e),  z). Hence, in an iterative manner the 
'/3 r boundary condition could be approached. The 
same was then applied to the Vo boundary condition 
with the same reasoning. Therefore for v o 

c~vo _ V_o (13) 
D r  f R0 

For  the vz condition it became apparent that 
Ovz/Or = 0 would be adequate. 

3.3. Rotating electroIyzer 

Here the axial velocities became small (three orders of 
magnitude smaller than the other velocities) and hence 
the same Vr condition was invoked - Equation 11. 

The azimuthal component of velocity was deter- 
mined using the boundary condition 13 (although 
using Ovo/Or = 1 provided similar results). Tile vz 
boundary condition was the same as for the CG cell, 
viz. ~vz/Or = O. 

The pressure did not have to be specified anywhere, 
since it had been included in the integration by parts 
in developing the generalized finite element formula- 
tion. Gresho et al. [19] comment on this as the only 
consistent manner of treating the pressure term. 

3.4. Numerical formulation 

The equations, specification of  the dimensionless 
groups and the establishment of  the boundary con- 
ditions complete the model formulation. A Galerkin 
finite element (GFEM) program was then constructed 
to solve the above system of equations. 

Since the equations are nonlinear the solution 
procedure must necessarily be iterative in nature. Initi- 
ally, Picard iteration was used, but this was inefficient 
for Re values above 50 and would not converge for 
Taylor numbers above 3.0. The Newton-Raphson 
method was then incorporated to enhance conver- 
gence. In the G F E M  formulation, the discrete values 
of  the variables at the nodes are the unknowns and 
therefore partial differentiation (in establishing the 
Jacobian) is with respect to these [19, 20], This 
provided much better convergence; the solution was 
usually commenced with three or four iterations of  
Picard iteration, followed by two or three Newton-  
Raphson steps. For  higher nonlinearities, convergence 
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was obtained by using less nonlinear converged solu- 
tions as restart initial conditions for the more non- 
linear cases. The frontal solution subroutine of  Hood  
[21] for asymmetric matrices was employed for the 
solution of  the resulting large set of  simultaneous 
equations. 

4. Flow field results 

The results of  the model are reported and discussed 
according to the cell type. 

4. l. Capillary gap cell 

Computer  runs were done for this case and the general 
forms of  velocity profiles were confirmed. The flow is 
initially purely axial in the inlet pipe, with no radial 
component  (for stationary discs no azimuthal velocity 
was present anywhere). After rounding the sharp 
corner, after a certain entry length, the fluid flows in 
fully developed radial outflow, it being parabolic with 
respect to the z coordinate. In addition, when the 
product  rVr is plotted for numerous z values, one sees 
that rvr approaches a function of z only at large 
enough radius, and vz approaches zero. Figure 2 pre- 
sents the rVr asymptotes for this cell and comparison 
of the values of  the asymptotes shows that they obey 
a parabolic profile. 

Once the entry region is accounted for the flow 
is very simple. Because of  this, most  of  the experi- 
mental work done to date, along with subsequent 
theoretical analysis, has been performed assuming 
that the flow was fully developed. However, there 
is very little knowledge concerning the extent of  
the entry zone. To help in quantifying this, com- 
puter runs were done in which flow rate, gap width 
and inlet pipe radius were changed. The rvr function 
was then plotted for these different conditions. The 
radius at which the product  rvr became a function 
of z only was then interpreted as the entry length. 
A number  of  runs were done as suggested, altering 
the inlet radius from 1.2 to 9mm,  the gap width 
from 0.60 to 6.3 mm and the flow rate from 6.8 x 
10 -8 to 1.25 x 10-Sm3s -I. An approximate asymp- 
totic solution was also derived and then used to 
calculate required entry lengths. The form of the 

asymptotic entry length solution was 

Q a ]  '/2 (14) 
Rentry = .57~ J 

Table 1 presents a comparison of  some entry length 
values for different parameter  ranges. 

Although the results are of  the same order of  mag- 
nitude, the comparison is poor. The asymptotic entry 
length solution shows that the entry region is a func- 
tion of  flow rate, gap width and the fluid kinematic 
viscosity. The FEM calculations also indicate, how- 
ever, that the entry tenth is a function of inletradius; 
decreasing with increasing inlet radius. A few forms 
of correlation were tried but no attempted combina- 
tion provided a reasonable collapse of  the G F E M -  
computed entry lengths. The comparison is improved 
by adding Rin to the asymptotic results, this being 
intuitively consistent in light of  the geometry. 

With the given cell geometry (the fluid flows up the 
pipe and then out radially between the two parallel 
discs), and since the corner is sharp, there is separation 
and an eddy formed at that point. At low flow 
Reynolds numbers the region of  separation was small. 
However, at increasing Re the region of  separation 
increased. For  an Re of 100 the vortex ended at 
r = 0.44; for Re equal to 220 it extended to r = 0.59 
and at Re equal to 420 it ended at 0.68 dimensionless 
radius (using an aspect ratio (Ro/a) of 10). As antici- 
pated the vortices, at their highest point, influenced 
30, 40 and 50% of  the interelectrode gap at Reynolds 
numbers of  100, 200 and 420, respectively. 

Table 1. Comparison of entry lengths 

1. f in  = 2.4mm, R o = 12mm, gap = 0.60mm, 
Q = 6_8e-O7m3s -I 

Asymptotic entry length = 5.1 mm 
FEM length = 8.7mm 

2. R i n =  1.2mm, R o = 24mm, gap = 1.2mm, 
Q = 2.0e-O~m3s -t 

Asymptotic entry length = 12.3 mm 
FEM length = 21.1 mm 

3. R~n = 5.0mm, R o = 50ram, gap = 1.0mm, 
Q = 12.5e ~ t 

Asymptotic entry length = 28.2 mm 
FEM length = 42.0mm 
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One important point is that at Re equal to 220 and 
420 another eddy forms further downstream. How- 
ever, it forms at the upper disc. In addition, it forms 
at approximately the point where the eddy from the 
bottom disc terminates. For  example, at Re = 220, 
the bottom vortex stopped at r = 0.59 and the top 
one commenced at the same radius. At Re = 420 the 
bottom one ceased at r = 0.69 and the top one for- 
med at r = 0.66. The duration of this upper eddy also 
increased with Re. At Re = 220, the upper one ended 
at 0.66 (short lived), while at Re = 420, it ceased at 
r = 0.94. 

Beyond a Reynolds number of 420, convergence 
was very difficult to obtain; the velocity values 
appeared to vary around a certain magnitude but 
tended to cycle. In the light of  what Mochizuki et aL 
[6] reported, this may be due to the time-dependent 
physics of the problem. Moreover, Yang [9] has indi- 
cated that eddy formation is a cyclic time-dependent 
phenomenon. He also reported the general upper and 
lower vortex regions, as were observed in the present 
finite element simulation (steady state), alternating in 
a regular manner. 

These results of Yang would lend credence to the 
predictions of the present model and would also sup- 
port the need for a transient analysis for intermediate 
to high Reynolds numbers. 

4.2. Pump cell 

The FEM program was then applied to the pump cell 
with conditions given in Fig. 6 of Szeri et al. [7]. This 
flow represents a finite through-flow with the charac- 
teristic areas of  positive and negative radial velocities. 
Figure 3 presents a comparison of the experimental 
data of Szeri et al., their numerical results and this 
work. This present model provides as close a com- 
parison to experimental data as the numerical approach 
of Szeri. They indicated in a previous paper [15] that 
convergence was possible for a gap rotational Reynolds 
number of  140, whereas convergence was obtained up 
to 540 in this work. The Newton-Raphson FEM 
might therefore be superior to the approach which the 
previous authors employed, although no CPU time 
comparison is possible. The agreement, compared to 
previous work, is close, which lends credence to results 
generated herein. 

As opposed to the capillary gap cell the radial veloc- 
ity does not approach an asymptote and the axial 
velocities are finite and can be quite large (although at 
least an order of  magnitude smaller than the radial 
and azimuthal components). This made modelling the 
PC flow field more difficult than the capillary gap cell, 
since once the flow was fully developed, an algebraic 
extrapolation procedure (based on rvr becoming a 
function of  z only) was not as readily apparent as in 
the capillary gap cell. Even with aspect ratios (l/e) as 
large as 40, no asymptotic behavior was observed in 
the PC velocities that would allow a simplified extra- 
polation technique for velocity determination at larger 
radii. This would be a serious limitation since the 
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Fig. 3. Pump cel lcomparison at 44.4r.p.m: (c~ = 3.42) radial veloc- 
ities at R = 12.7cm, gap = 3 .18mm and flow rate = 2.0 x 
10-Sm3s -t .  ( ) FEM model; ( - - - - )  Szeri's model; (O) Experi- 
mental  data. 

FEM would have to be used throughout the flow field 
computation, and the storage and CPU time require- 
ments would soon become excessive. Indeed, even at 
e = 0.025, at a Reo = 104, 321 elements were recluired 
to resolve the flow field in the PC (4600 equations), 
requiring approximately 230 CPU minutes on a 
Vax 11/780 computer. In industrial cells aspect ratios 
are often as large as 1000 (e = 0.001) and hence com- 
puter costs would be prohibitive unless recourse to a 
super computer was available. Even then, the utility of  
such calculations might be questionable. 

Due to the applied nature of  this work, a semi- 
analytical scheme was then sought, hoping ;:hat a 
representative flow field solution might be possible, 
which could then be employed in the subsequent reac- 
tor computations to be described in later papers. 

Using Equations 1-4 the order of  magnitude of  the 
second order r terms is e 3 (since 1~Re ~ e) and since e 
is at least as small as 0.10, these terms were dropped. 
It is thought that this is a good assumption since 
usually ~ ~ 0.01 and therefore negligible error should 
be introduced by this omission. The equations then 
become 

Ovr v~ Vz Ovr OP 1 8~-vr 
Vr -&r -- spin - -  + 

r e 8z 8r + eRe 8z 2 

(15) 

8Vo VrVo Vz 8vo 1 82vo 
vr ~ + + - ( 16 )  

r e 8z eRe 8z 2 

OVz vz 8Vz 8P 1 82v~ 
vr 7 r  + - - -  (17)  e 8z 8z + eRe 8z 2 

'7-) r (~V r 1 8vz 
- - +  + - 0 (18)  
r 7 r  ~Sz  
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7-) o 

Vz 

P 

Only one other assumption was made. It was 
noticed that in some previous numerical results, the 
pressure did not differ too significantly from hydro- 
static pressure (in the axial direction). I f  this is 
assumed, then ~P/dz would be approximately zero 
due to the dimensionless pressure definition. Hence, 
the pressure term retained in the system, OP/Or in 
Equation 16, becomes dP/dr, P being a function of 
radius only. A similarity solution was attempted using 
different stretching transformations. The azimuthal 
velocity boundary conditions would not collapse, how- 
ever, and this approach had to be dismissed. 

Perturbation was then employed using e = a/Ro as 
the perturbation parameter.  Each of  the dependent 
variables was expanded as a series. That  is, 

7.) r = 23r0 -~- g 'Url  - t -  g 2 V r 2  -~- . . . 

= 'OO0 -~- 8 V  1 - t-  8 2 V 0 2  "t" . . .  

= Vz0 -}- g'7.)zl -{- 82eOz2 --~ . . .  

P0 + ePx + ~2P2 + . . .  

(19) 

(20) 

(21) 

(22) 

Substituting these into the equations and solving 
each order of  epsilon resulted the following second 
order solution. (For a detailed account of  the assump- 
tions made in the derivation of these equations consult 

[221.) 

v~l = Re r spin - -i2 + 3 20 + 1-0 

R i n  ) 
aRer (z2 - z) (23) 

and 

P0 = 0.15 spin (r 2 - 1) - \ a R e J  In (r) (24) 

The results appeared qualitatively consistent (see 
Figure 4) and so a higher order solution was sought. 
Due to the length of the polynomials, the symbolic 
math  package ' M A C S Y M A '  was used to carry out the 
algebra and the integrations. The resulting expressions 
are too lengthy to include herein but are listed in 
[22] and can be obtained from the authors. Since 
the velocities appear  at different orders of  ~ (the v~ 
appeared at v~ and v~ 3 while v o appeared at Voo, Vo2 and 
Vo4 and Vz at %2 and %4), the calculations had to be 
extended to include epsilon-to-the-fourth-power 
terms. The unfortunate part  of  this was that, with 
increasing epsilon order, the velocity terms increased 
by a power of  Reynolds number and/or spin, which 
can be, and usually are, quite large. Radial velocity 
comparisons between these fourth order estimates and 
the second order approximations,  along with the 
numerical values generated by the FEM program, are 
shown in Figs 5 and 6 at two sets of  parameter  values. 

Figures 7 and 8 report  the comparisons for the 
other velocity components.  Again a reasonable fit was 
obtained except for the fourth order azimuthal solu- 
tion. This problem is caused by the higher order terms, 
including powers of  Re which, in the case of  the fourth 
order solution, apparently dominate.  In the light of  
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Fig. 4. Pump cell at 500r.p.m. (e = 3.6) Semi-analytical solution: 
gap = 1.0mm and flow rate = 8.33 x 10 7m3s -1. ( ) r = 
0.20; ( - - - )  r = 0.60; ( - - - )  r = 1.00. 

this, the second order approximations are more con- 
sistent over a large parameter  range and will probably 
be the ones of  choice, due to the conservative nature 
of  the simulation that would result from their usage. 
Other comparisons were then done between the per- 
turbation solution and the rigorous numerical model. 
Figure 9 presents the maximum axial velocity com- 
puted in the FEM model as a function of radius. After 
an entry length, the axial velocities approach a con- 
stant value over most of  the disc until they are polluted 
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Fig. 5. Pump cell solutions at 95.5 r.p.m. (e = 1.6) Radial velocities 
at Re = 2, gap = 1.0mm and flow rate = 6.28 x 10-9m3s ~. 
( ) FEM; ( . . . .  ) Second order; ( - - - )  Fourth order. 
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Fig. 6. P u m p  cell so lu t ions  at  95.5 r .p .m.  (~ = 1.6) Radia l  velocities 
at  Re = 50, gap = 1 . 0 m m  and  flow rate = 3.14 x 10 -7m3s  -~. 
( - - )  F E M ;  ( . . . .  ) Second order;  ( - - - )  F o u r t h  order.  

by the exit end boundary conditions (this influence 
being probably quite realistic, since the cells empty 
into a larger mixing tank with smaller axial velocities). 
This agrees well with the v~ perturbation behavior. 
Large gap widths were then modeled to ascertain 
comparative performance between the semi-analytical 
solution and the FEM model. Figure 10 presents the 
results from Fig. 2 but with the second order per- 
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Fig. 7. P u m p  cell so lu t ions  at  95 .5r .p .m.  (c~ = 1.6) Axial  and  
az imutha l  velocities a t  Re = 2, gap  = 1 . 0 m m  and  flow rate  = 
6.28 x 1 0 - 9 m 3 s - k  ( ) F E M ;  ( . . . .  ) Second order; ( - - - - )  
F o u r t h  order.  
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Fig. 8. P u m p  cell so lu t ions  at  95 .5r .p .m.  (~, = 1.6) Axiai  and  
az imutha l  velocities at  Re = 50, gap = 1.0 m m  and  flow rate = 
3.14 x 1 0 - 7 m 3 s - k  ( - - )  FEM;  ( . . . .  ) Second order;  ( - - - )  
F o u r t h  order. 

turbation solution superimposed. The rotational rate 
is not large (only 44.4r.p.m.), however the gap is 
3.2 mm corresponding to a Taylor number of 3.4. For 
this parameter range the agreement is only qualitative. 
A modification was then included which corrects 
the radial and axial velocities for large Taylor num- 
bers; the agreement is excellent for an e of 0-4.0 for 
both radial and axial velocities. By comparison to 
the GFEM results the modification is of the form: 
exp (-0.14(~-0.60)2); for ~ values less than 0.60 no 
correction is invoked. The approach is to correct the 
positive radial velocity jet by the above expression and 
then to compute a similar factor for the negative 
velocity jet which will conserve mass. For the axial 
velocities the above exponential factor is simply 
applied. 

Figure 11 presents a comparison of the modified 
solution with the previous solutions for an e of 3.42. 
By changing the form of the correction (exp ( -  0.14(c~- 
0.60) 2) is adequate for c~ < 4.0) higher Taylor number 
solutions could be approximated using the basic solu- 
tion derived herein~ 

Figure 12 presents a comparison of azimuthal 
velocities for the detailed and simplified models. Note 
that this component is essentially constant over a 
region of the gap (0.25 < z < 0.75). Although the 
agreement is not exact, this solid body rotation, com- 
mented on before as the Batchelor branch, is observed 
in both solutions, again indicating the rather complete 
representative nature of the perturbation solution, 
despite its simplicity. The somewhat flat v o profile 
(over 0.25 < z < 0.75) is not obtained in the numeri- 
cal solution until a higher r.p.m, is reached, however. 
In addition, another mitigating factor is that the pump 
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cells are most often operated at small gap widths. 
Since the Taylor number is proportional to gap width 
but proportional to the square root  of rotational 
speed, a decrease in gap width allows the factor 
squared increase in r.p.m, to maintain the same e. 
Therefore, if a Taylor number of 2.2 is used with a 
2 mm gap width (large for pump cell applications), the 
cell r.p.m, would be 46.2; not very high indeed. If the 
gap were decreased to 1 mm (still large for the pump 
cell), the rotational speed could be increased to 
184.9 r.p.m. If the aspect ratio is 100 (most industrial 
cells would be at least 100), the Reo would then be 
1.9 x 10 s which is very close to the onset of  tur- 
bulence at the exit radius. Since this work is confined 
to laminar systems, the semi-analytical solution 
developed herein provides a consistent and adequate 
flow field representation to the pump cell over a wide 
parameter range. Since the solution is of a simple 
algebraic form, a function of  radius, axial distance and 
dimensionless groups, it is very easy and cheap to 

1.00 

Fig. 9. Pump cell solutions at 95.5 r.p.m. 
Maximum axial velocities at Re = 2, 
gap = 1.0ram and flow rate = 6.28 x 
10-9m3s -I. ( ) FEM; ( - - - - )  Second 
order. 

employ. In addition, the modification included gives 
this semi-analytical solution a significantly broader 
range of application. 

One interesting characteristic, which in the context 
of the literature review included herein has never been 
reported, is the radial velocity profiles at large Taylor 
number. Figure 13 presents a plot of Vr at a gap width 
of  6.4mm, rotational speed of 45.7 r.p.m. (~ = 7) and 
a flow rate of 229 cm 3 min 1 (Re = 96). Rather than 
exhibiting the conventional double hump shape (one 
positive and one negative), there is a somewhat stag- 
nant zone in the central region of the map. Figure 14 
presents the corresponding axial and azimuthal com- 
ponents for this system. The axial profile is much 
flatter than for smaller Tayler number runs; the azi- 
muthal velocity however is much the same as before, 
exhibiting the somewhat flat portion over a large seg- 
ment of the gap. This behavior (that of the somewhat 
stagnant radial velocities) agrees qualitatively with the 
observations of Jansson et al. [5]. Their observation 
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Fig. 10. Pump cell comparisons at 44.4r.p.m. Radial velocities at 
R = 12.7cm, gap = 3.18mm and flow rate = 2.0 x 10-Sm3s - l .  
Taylor number (e) = 3.42. ( ) FEM; ( - - - - )  Szeri's model; 
( - - - )  Simple model; (O) Experimental data. 
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Fig. 11. Pump cell comparisons at 44.4 r.p.m. Radial velocities at 
R = 12.7cm, gap = 3.18mm and flow rate = 2.0 x 10-Sm3s -~. 
Taylor number (e) = 3.42. ( ) FEM; ( . . . .  ) Szeri's model; 
( - - - )  Simple model; (o)  Experimental; (A) Altered model. 
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Fig. 12. Pump cell solution at 300r.p.m. Azimuthal  velocities at 
Re = 2, gap = 1 .0mm and flow rate = 6.28 x 10-9m3s 1 
Taylor number  &) = 2.8. ( ) FEM; ( . . . .  ) second order. 

(based on current density versus gap width experi- 
ments) was that current density, at a specified rotational 
speed, reached an asymptote on a current density-gap 
width plot, beyond which increasing gap resulted in no 
change in current. They concluded that this indicated 
a decoupling of  the anode and cathode layers, after 
which the electrodes respond as if each were in a 
semi-infinite medium. Figure 13 substantiates this 
interpretation, showing that there is a boundary layer 
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Fig. 13. Pump cell solution at 45.7r.p.m. Radial velocities at 
Re = 96, gap = 6 .4mm and flow rate = 3.82 x 10 6m3s-l .  
Taylor number  (e) = 7.0. 
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Fig. 14. Pump cell solution at 45.7r.p.m. Axial and azimuthal 
velocities at Re  = 96, gap = 6.4ram and flow rate = 3.82 x 
10-6m3s -1. Taylor number  (~) = 7.0. ( - - . - - - )  Axial velocity; 
( - - - - )  Azimuthal  velocity. 

at each electrode separated by a relatively stagnant 
zone of  fluid. There is, however, coupling still present, 
since the axial velocities are unidirectional. Therefore 
fluid leaving the reverse-flow region is carried into the 
bulk and then to the radial outflow region. Since the 
residence time of  the central region is different from 
the radial jet close to the spinning disc (approximateIy 
an order of magnitude larger), this may impact ~:he cell 
performance depending on the reaction schemes pre- 
sent. In addition, since the somewhat stagnant region 
may act as a 'reservoir' for eleetroactive components, 
one may see a reduced interplay between the electrode 
(anode/cathode) processes, although an actual decoup- 
ling may or may not be seen depending on the relative 
sizes of  the three zones (anolyte, the somewhat radi- 
ally stagnant bulk and the catholyte). This behavior 
was not predicted by the simplified solution and was 
not seen in any pump cell velocity simulations with 
Taylor numbers less than about 5.0. The observations 
of Jansson et al. [5] were at rotational Reynolds num- 
bers well above 3 x t0 s, indicative of  transition 
between laminar and turbulent flows, and theretbre no 
more conclusive evidence is available concerning the 
role of this stagnant zone in the decoupling of mass 
transfer between closely spaced discs. 

4.3. Rotating electrolyzer 

This cell, briefly described as two coaxial co-rotational 
discs, was modeled using the same G F E M  program 
that was employed for the other two cells. Surprisingly 
it exhibited many of  the same characteristics as the 
capillary gap cell. After a certain entry length, rv r 
approaches a function of  z only. Figure 15 illustrates 
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Fig. 15. Rotating electrolyzer at 120 r.p.m. 
Entry length information at Re = 96, 
gap = 6.4mm and flow rate = 3.82 x 
10-6m3s -I. Taylor number (c0 = 11.3. 
( ) z = 0.03, 0.97; ( . . . .  ) z = 0.25, 
0.75; ( - - - - )  z = 0.50. 

this. The axial velocities were much smaller than in the 
pump cell, and from continuity, since rVr is a function 
of z only, then 

a(rv,) c3 (rVz) 
- -  + - -  = 0 ( 2 5 )  

8r 8z 

therefore r x (OVz/SZ) = 0, meaning that Vz is either 
a constant, or a function of radius only. Since no-slip 
is obeyed at the electrodes, vz must approach zero 
across the gap in order for Ovz/Oz to be consistent. It 
should also be noted that Fig. 15 presents the rvr 
asymptotes for the same parameter values as were 
used in generating Fig. 3 for the CG cell. The required 
entry length was considerably larger in the stationary 
cell than in the rotating electrolyzer. For  an approxi- 
mate idea of  entry length, the asymptotic solution 
could be used (Equation 15) for the REL as well; 
indeed, it will provide a more accurate estimate for the 
REL entry length since they are always smaller than 
those of  the CG cell; the asymptotic solution provided 
smaller entry regions than were actually the case for 
the CG cell. 

Figure 16 presents a plot of  the radial velocity 
profiles at three Taylor numbers (3.1, 7.0, 11.3). As the 
Taylor number increases, the radial velocity profile 
becomes progressively steeper. The form of the radial 
velocity profile, as a function of  flow rate, is described 
in Fig. 17 for a Taylor number of  11.3. As is evident, 
the radial velocity profile is very insensitive to flow 
rate. At higher flow rates the profiles are slightly more 
smooth, but it is thought that this small change in 
shape would not be important in terms of  impact on 
cell performance. Once the Taylor number is specified, 
one can utilize the same profile at any flow rate (lami- 
nar flow), taking into account the flow rate depen- 
dence of  the entry region. This provides an important 
simplification to the rotating electrolyzer flow field. It 
was thought that by providing a correlation for radial 
velocity profiles (as a function of Taylor number and 
gap width) great economy could be gained. To pursue 
this idea the profiles were first fitted by nonlinear least 
squares with the coefficients to be correlated with 
Taylor number. This method would work well for 
low Taylor numbers, where the profile is somewhat 
smooth, but for ~ above about 3.5 the profiles were 
inadequately represented via polynomials: sixth order 

polynomials were required to gain an adequate fit for 
the radial velocity profiles (as a function of z - 7 
points were used (hence, a perfect fit)), but when 
velocities were generated at intermediate z values, they 
were completely unrealistic. Other forms of expres- 
sions could be employed (other than polynomials), 
but it is thought that with very steep gradients, as seen 
in Fig. 17, no simple form may be adequate and hence 
no further effort was expended here. Since the simula- 
tions developed herein are based upon azimuthal sym- 
metry, little has been mentioned of  their form. Rela- 
tive to that theme, the azimuthal velocities were very 
uniform approaching solid body rotation, especially 
at the lower flow rates. As flow rate increases, there is 
more velocity lag between the discs and the bulk of the 
fluid. Indeed, Jansson [3] reports negative azimuthal 
velocities at flow Reynolds numbers above 2100; they 
are particularly pronounced at smaller radii. This 
was not confirmed in this work due to discretization 
requirements and lack of  computational power, 
although as flow rate was increased, larger lags 
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Fig. 16. Rotating electrolyzer solutions. Radial velocities with 
changing Taylor number: gap = 6.4mm and flow rate = 3.82 x 
10-6m3s L( )c~ = 3.1;( . . . .  )~ = 7.0;( . . . . .  )~ = 11.3. 
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Fig. 17. Rotating electrolyzer solutions. Radial velocities with 
changing flow rates: gap = 6.4mm and Taylor number = 11.3. 
( )Re  = 10;(---)Re = 2 8 8 ; ( - - - ) R e  = 544. 

between bulk fluid and the electrodes were observed as 
mentioned above. 

5. Summary 

The flow fields present in the three radial flow cells 
were simulated using finite element methods and for 
the case of  the pump cell, a perturbation technique 
was developed. 

The FEM program provided very good quantitative 
agreement with previous results (both experimental 
and theoretical) and proved to be more stable than 
some similar codes developed earlier [15]. 

The general forms of  the velocities were confirmed 
and it was shown how the CG cell and REL exhibit 
the same radial velocity asymptotic behavior with the 
corresponding axial velocities approaching zero. 

The pump cell was more difficult to quantify, but 
with the development of  second and fourth order 
perturbation solutions, the flow field is adequately 
described over parameter  ranges at which pump cells 
are usually operated (confined to laminar operation 
however). This semi-analytical solution provides repre- 
sentative velocities even for developing flow, although 
the vortex region, after rounding the sharp corner at 
the inlet pipe radius, is not accounted for. 

An approximate asymptotic expression for entry 
length was derived for the C G  cell, which is also 
applicable to the REL. It  was found that rotation in 
the REL provides a stabilizing influence in terms of  
entry length requirements; all other conditions being 
the same, entry length for the REL is less than that o f  
the CG, becoming smaller as Taylor number increases. 
The asymptotic expression for entry length provided a 
qualitative description of  entry length dependence on 

gap width and flow rate. It, however, provided no 
dependence on inlet pipe radius, which was observed 
to have a stabilizing influence (shorter entry length) as 
it increased for given flow rate. 

At large Reynolds numbers (above 220) two regions 
of  separation were observed in the capillary gap 
simulation, one at each disc, one starting as the other 
one diminished. This behavior was also reported by 
Yang [9] in experimental studies. To explore this, a 
transient model will be required which would be 
recommended as future work. 

The insensitivity of  REL radial velocity profiles to 
flow rate was shown. In addition, the separation effic- 
iency of the REL was described in terms of the radial 
velocity jets which form next to the electrodes. The 
larger the Taylor number the better the separation. 

A high Taylor number  pump cell simulation was 
performed which tended to substantiate, in terms of  
velocity profiles, the decoupling of electrodic mass 
transfer (anode and cathode mass transfer) as observed 
by Jansson [5]. At Taylor numbers beyond about  5, a 
relatively stagnant radial velocity region was observed. 
This could act as a large 'reservoir '  of  electroactive 
components,  playing the role of  the semi-infinite 
medium for each electrode. 

Subsequent papers will apply the developed w~locity 
profiles to overall simulation of the laminar radial 
flow cells. 

Acknowledgement 

The authors express their appreciation to Monsanto 
Corporat ion for their support  of  this project over the 
years 1984 to 1987. They would also like to thank 
Hycal Energy Research Laboratories for covering the 
costs of  publication. 

References 

[1] R.E.W. Jansson and G. A. Ashworth, J. App/. Elect~chem. 
7 (1977) 309. 

[2] R.E.W. Jansson and N. R. Tomov, Chem. Ind. 4 Feb. 
(1978) 96. 

[3] R.E.W. Jansson, Eleetrochim. Aeta 23 (1978) 1345. 
[4] G.A. Ashworth and R. E. W. Jansson, Eleetrochim. Acta 

22 (1977) 1295. 
[5] R.E.W. Jansson and G. A. Ashworth, Electrochim. Acla 

22 (1977) 1301. 
[6] S. Mochizuki, W. J. Yang, Y. Yagl and M. Ueno, ,L Heat 

Transfer 105 (1983) 598. 
17] A.Z. Szeri, S. T. Schreider, F. Labbe and H. N. Kaufman, 

J. FluidMech. 134 (1983) 103. 
[8] P.S. Moller, Aeronaut. Quart. May (1963) 163. 
[9] W.J. Yang, 'Seminar on Flow between Parallel Discs with 

Simultaneous Heat Transfer', Washington University, 
St. Louis, MO, Dec. (1985). 

[101 F.J. Bayley and J. M. Owen, Aeronaut. Quart. Nov. (1969) 
333. 

[11] H. Schlichting, 'Boundary Layer Theory', 7tlTt edn, 
McGraw-Hill, St. Louis (1979) pp. 102-107. 

[12] G.K. Batchelor, Quart. J. Mech. Appl. Math. (1951) 4, 29. 
[i3] K. Stewartson, Proe. Cam& Phil. Soe. 49 (1953) 333. 
[14] M. Holodniok, M. Kublcek and V. Hlavacek, Z Fluid 

Mech. 81 (1977) 689. 
[151 M.L. Adams and A. Z. Szeri, J. Appl. Mech. 49 (1982) 1. 
[16] F. Kreith, J. Heat Mass Transfer 9 (1966) 265. 
[I7] R.E.W. Jansson, R. J. Marshall and J. E. Rizzo, & AppL 

Eleetrochem. 8 (1978) 281. 



780 F . B .  THOMAS,  P. A. R A M A C H A N D R A N ,  M. P. D U D U K O V I C  A N D  R. E. W. JANSSON 

[18] M. Simek and I. Rou~ar, Coll. Czech. Chem. Commun. 49 
(1984) 1122. 

[19] P.M. Gresho, R.L. Lee and R.L. Sani, in 'Recent 
Advances in Numerical Methods in Fluids' (edited by C. 
Taylor and K. Morgan) Pineridge Press, Swansea, UK 
(1980) Vol. 1, pp. 27-79. 

[20] B.A. Finlayson, 'Nonlinear Analysis in Chemical Engineer- 

[211 
[221 

ing', McGraw-Hill, New York (1980) pp. 230-271, 
291-312. 

P. Hood, Int. J. Num. Meth. Engng 10 (1976) 379. 
F. B. Thomas, 'Modeling of Laminar Radial Flow Elec- 

trochemical Cells', D.Sc. Thesis, Washington University, 
St Louis, MO August (1987). 


